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Heat transfer to non-newtonian fluids flowing laminarly through rectangular ducts is 
examined. The conservation equations of mass, momentum, and energy are solved numeri- 
cally with the aid of a finite volume technique. The viscoelastic behavior of the fluid is 
represented by the Criminale-Ericksen-Filbey (CEF) constitutive equation. Secondary flows 
occur due to the elastic behavior of the fluid, and, consequently, heat transfer is strongly 
enhanced. It is observed that shear thinning yields negligible heat transfer enhancement 
effect, when compared with the secondary f low effect. Maximum heat transfer is shown to 
occur for some combinations of parameters. Thus, there are optimal combinations of 
aspect ratio and Reynolds numbers, which depend on the fluid's mechanical behavior. This 
result can be usefully explored in thermal designs of certain industrial processes. © 1996 
by Elsevier Science Inc. 

Keywords: f low of viscoelastic liquids; forced convection through rectangular ducts; 
Criminale-Erickson-Filbey (CEF) equation 

I n t r o d u c t i o n  

Flows of non-Newtonian fluids through ducts of noncircular cross 
section have been analyzed numerically and experimentally by a 
number of authors. Townsend et al. (1976) studied numerically 
and experimentally the flow through square ducts of a viscoelas- 
tic liquid and observed the existence of secondary flows in the 
cross-section plane. These secondary flows are in the form of 
eight vortices arranged symmetrically. Gervang and Larsen (1991) 
have recently analyzed this problem numerically for other aspect 
ratios and also observed the presence of vortices. They noted 
that, as the aspect ratio is increased, the vortices become differ- 
ent in shape, strength, and size. 

The heat transfer problem has also been investigated for this 
flow. For purely viscous non-Newtonian fluids, Chandrupatla and 
Sastri (1977) and Gringrich et al. (1992) have shown that for 
shear thinning fluids, heat transfer is more intense than for 
Newtonian fluids. For shear thickening fluids, the opposite trend 
is observed. 

For viscoelastic fluids, heat transfer rates are typically larger 
than for Newtonian fluids. Mena et al. (1978) investigated flows 
of polymeric solutions in triangular and rectangular ducts, while 
Naccache and Souza Mendes (1992) analyzed numerically fully 
developed flows through rectangular ducts of different aspect 
ratios. Hartnett and Kostic (1985) studied experimentally the 
thermal entrance region of rectangular ducts and compared the 
entrance region flow of viscoelastic and Newtonian fluids. Their 
results suggested that secondary flows are responsible for the 
heat transfer enhancement observed. However, no flow visualiza- 
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tion results have been reported. Dunwoody and Hamill (1980) 
analyzed both the dynamic and the thermal problems numeri- 
cally, using as constitutive equation the third-order fluid model. 
Hartnett (1992) and Kostic (1994) offer comprehensive surveys 
on the subject. 

A common observation reported in these papers is that, for 
laminar flows through ducts of noncircular cross sections, heat 
transfer phenomena involving non-Newtonian fluids are signifi- 
cantly different from their Newtonian counterparts. Two distinct 
effects cause these differences; namely, (1) the viscosity depen- 
dence on shear rate (shear thinning or thickening fluids); and (2) 
secondary flows caused by elastic effects. 

In general, viscoelastic fluids show both viscosity dependence 
on shear rate and elastic behavior. To describe mathematically 
the mechanical behavior of this kind of fluid, it is necessary to 
use relatively complex constitutive relations, such as retarded 
motion expansions, differential or integral models (Bird et al. 
1987). The Generalized Newtonian Liquid model, widely used for 
representing the viscosity dependence on shear rate, is not capa- 
ble of predicting elastic mechanical behavior. 

Gao and Hartnett (1996) studied this problem with the aid of 
the Reiner-Rivlin model, which is capable of predicting nonzero 
second normal stress coefficients. This model, however, predicts 
a null first normal stress coefficient, which is shown in the 
present paper to have significant effects in the secondary flow 
strength and, hence, in heat transfer. 

In this work the Criminale-Erieksen-Filbey (CEF) equation 
is employed as constitutive equations. It is similar to a second- 
order fluid, except that the coefficients are allowed to be func- 
tions of 4/, the deformation rate. It is an attractive choice for this 
problem, because it is perhaps the simplest constitutive equation 
that can predict shear thinning (or thickening) together with 
nonzero first and second normal stress differences in steady 
simple shear flows. (Steady simple shear flows have a velocity 
field of the form v = 4/Yex, where 4/is a constant, in some x , y ,  z 
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Cartesian coordinate system.) The driving force that causes sec- 
ondary flows in noncircular ducts is known to be related to the 
mechanism that generates second normal stress differences in 
steady simple shear flows (e.g., Townsend et al. 1976). 

This paper reports a numerical investigation on heat transfer 
to viscoelastic liquids flowing in a rectangular duct. Among other 
conclusions, it is shown that the secondary flow is, indeed, the 
enhancing mechanism for heat transfer and that the Nusselt 
number depends on the duct aspect ratio in a different fashion, 
as compared to the trends observed for Newtonian fluids. More 
details of the research reported here can be found in Naccache 
(1993). 

Analysis 

The problem under study is depicted in Figure 1. The geometry 
consists of a duct of rectangular cross section, with aspect ratio 
et = B / H .  The  side walls are adiabatic, while the top and bottom 
ones are uniformly heated. 

The flow is assumed to be laminar and steady, and the 
compressibility of the fluid is neglected. Neither natural convec- 
tion nor temperature-dependent properties are considered in the 
present analysis. 

Governing equations 

For the situation described above, the conservation equations 
are: 

divv = 0 (1) 

p div(w) = - grad p + div ,r + pg (2) 

pcv.grad T = k V 2 T  (3) 

where v is the velocity vector field, p the mass density, c the 
specific heat, k the thermal conductivity, T the temperature, p 
the pressure, and g the acceleration due to gravity. The extra- 
stress tensor "r is the part of the stress tensor that vanishes when 
there is no motion other than rigid-body translation and rotation 
and is a function of the flow kinematics. For viscoelastic fluid 
behavior, it is often convenient to decompose "r into two terms; 
namely, a Newtonian-like term and a polymeric term "re. The 
latter depends on the constitutive equation chosen. 

"r = .q(,~/)4/+ ,re (4) 

In the above equation, 4/= gradv + (gradv) r is the rate-of- 
deformation tensor. The scalar rate of deformation ~/ is defined 
as ~ ~ ¢ ( 1 / 2 ) t r  5, 2 , and ~(~,) is the viscosity function. 

Notation 
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V 
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X 

Y 
Y 

parameter of the Carreau-Yasuda equation, Equa- 
tion 16 
duct width, m 
specific heat, J / kg  K 
duct hydraulic diameter, m 
first Deborah number 
second Deborah number 
unit vectors in the x ,y ,  z directions, respectively, 
Figure 1 
friction factor, - (2(Op/OZ)Dh)/(p~ '2) 
magnitude of the acceleration due to gravity, m / s  2 
acceleration due to gravity, = - g 6 y ,  m / s  2 
duct height, m 
thermal conductivity, W / m K  
power-law exponent of the Carreau-Yasuda equa- 
tion, Equation 16 
pressure, PA 
dimensionless pressure 
Prandtl number 
wall heat flux, W / m  E 
mean wall heat flux, W / m  2 
Reynolds number 
temperature field, °C 
bulk temperature, °C 
wall temperature, °C 
mean wall temperature, °C 
x-component of velocity, m / s  
dimensionless x-component of velocity 
y-component of velocity, m / s  
characteristic flow velocity, m / s  
velocity vector field, m / s  
dimensionless y-component of velocity 
horizontal cross-wise coordinate, m 
dimensionless horizontal cross-wise coordinate 
vertical coordinate, m 
dimensionless vertical coordinate 

W 

W 

We 
Z 

Z 

Greek 

z-component of velocity (axial velocity), m / s  
mean axial velocity, m / s  
dimensionless axial velocity 
dimensionless mean axial velocity 
Weissenberg number 
axial coordinate, m 
dimensionless axial coordinate 

ct duct aspect ratio, -= B / H  

deformation rate, --- ¢'½tr .~2, (s-1) 

~/* dimensionless deformation rate, -= ~/'Yc 
~/c characteristic deformation rate, s-1 
4/ rate-of-deformation tensor, s-1 
~'12j second rate-of-deformation tensor, s -2 
A+ stream function difference, --- +m+,.x - O m i n ,  kg/ms 
"q viscosity function, kg/ms 
-% characteristic viscosity, kg /ms  
-% zero-shear rate viscosity, kg /ms  
-q~ infinite-shear viscosity, kg /ms  
-q* dimensionless viscosity 
-q~ dimensionless zero-shear rate viscosity 

dimensionless infinite-shear rate viscosity 
0 dimensionless temperature 
h characteristic time of fluid, s 
r extra-stress tensor, Pa 

v polymeric part of ~, Pa 
"re* dimensionless 'r e 
0 stream function, defined by O~/Ox =- - o r ;  O~/Oy 

~- pu; O , / O z  -~ O, kg/ms  
t~max maximum value of the stream function, kg /ms  
~ m i n  minimum value of the stream function, kg /ms  
~1 first normal stress coefficient, Pa s 2 
~2 second normal stress coefficient, Pa s 2 
~ dimensionless first normal stress coefficient 
~ dimensionless second normal stress coefficient 
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qw 

The mass and energy conservation equations, in dimension- 
less form, are written as 

qw 
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Figure 1 Schematics of the problem 

(8) 

Re Pr ~ + ~ ) c~ ~ 1 (9) 

The dimensionless variables appearing above are defined as: 

X = x / D  h Y = y / D  h Z = z / D  h 

U = u / vc  V = v / v  c W = w/v~  

T -  T b p + p g y  
0 'r e* ='rP/pv[  P =  - -  

(qwDh/k )  pc 2 

For the present situation, a Cartesian coordinate system is 
appropriate. Thus, the velocity vector is accordingly written as 
v =- u~ x + v~y + W~z, where z is the axial coordinate, and x and 
y are, respectively, the horizontal (transversal) and vertical coor- 
dinates. 

In this work, we examine the situation of fully developed flow. 
Thus, velocity and dimensionless temperature profiles are the 
same in all cross sections along the duct length (no z-depen- 
dence). This allows the flow to be treated as two-dimensional 
(2-D), and the conservation equations for this situation make up 
a set of elliptical, nonlinear partial differential equations that can 
be written in the following dimensionless form: 

oU oU 
U - - + V - -  

a X  aY 

OP 1 [ O [ aUk  

o* = n / n ~  (lO) 

where vc is a characteristic velocity (to be defined later), and 
D h = 2B/(oL + 1) is the hydraulic diameter. The bulk tempera- 
ture T b is evaluated as usual: 

Tb= 4---~.~ f H / 2  f B / 2 w T  d x d y  
wlJ~ "o "o 

(11) 

The characteristic viscosity % is defined as 

nc ~ n ( % )  (12) 

where "Yc =- vc/Dh is the characteristic shear rate. 
The Reynolds number Re and Prandtl number Pr are defined 

as 

pvcD h "qc c 
Re = - -  Pr = (13) 

% k 
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OV OV 
v - g  2 + v 
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(5) Constitutive equation 

As mentioned earlier, the CEF equation is employed to repre- 
sent the mechanical fluid behavior. In this case, the extra stress 
tensor becomes 

T = n ( ~ ) q  - -  1 • + ~XI'tl(y)~[21 Xld'2(~) ~ (14) 

where 

(6) 

(7) 

dg/ 
~/[21 ~- ~ - [(g radv) r"  g/+ "Y" (gradv)] (15) 

is the second rate-of-deformation tensor. The operator d /d t  
appearing in the above def'mition is the material time derivative. 
Usually, the quantities "q(~), ~l(g/), and xI, z(~/) are, respectively, 
identified with material functions measured in steady simple 
shear flow; namely, the viscosity, first, and second normal stress 
coefficients. This is a reasonable assumption for predominantly 
shear flows, like the present one. The deformation rate ~/ re- 
duces to the shear rate for steady simple shear flow. 

The viscosity function -q(~/) is given by the Carreau-Yasuda 
equation: 

"q('~) = x~ + (no - nq~)[1 + ()kdl)a] (n-1)/a (16) 
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The first and second normal stress coefficients Wa(~) and 
W2(~/) are assumed to be constant for simplicity. Preliminary 
tests, performed in the course of the present research, indicated 
that constant and variable normal stress coefficients yield the 
same qualitative results for typical dependences of xI,~ and ~2 
o n  "y. 

It is known that typical values of W2 for polymeric liquids are 
in the range -0.25W a < W2 < -0.10W1 (Bird et al. 1987). Thus, 
in the present research, the values of first and second normal 
stress coefficients are such that ~t' 2 =-0 .15Wa,  for all cases 
investigated. 

The dimensionless version of Equation 16 viscosity is 

~q* = "q~ + (~q~ - ~1~)[1 + (We ~¢*)=1("- a)/= (17) 

where 

"q* ~- "q0/~l~, xl~ ~ Xl=/'q~, We =- k~/~, 

The Deborah numbers are defined as 

~* - = ~ / ~  (18) 

Dea = ~tI~l-c " "~ , De2 ~2~/~ (19) 
"qc ~c 

The dimensionless first and second normal stress coefficients 
are given by 

De~. De 2 
q~  = R e '  *~  = Re (20) 

Boundary conditions and wal l  quantities 

The symmetry of the problem is explored in the sense that only 
one quarter of the domain is solved; namely, the upper right 
comer. The appropriate boundary conditions for the problem are 
shown in Figure 2. The usual impermeability and no-slip condi- 
tions are used for the velocity at the walls, and symmetry condi- 
tions are imposed at the two other boundaries. The duct is 
symmetrically heated at the upper and lower walls, while the 
vertical side walls are adiabatic. 

The thermal boundary conditions are investigated at the top 
and bottom walls; namely, the H I  and the H 2  boundary condi- 
tions (Kaka~ et al. 1987). For the H1 boundary condition, the 
wall heat flux varies in the crosswise direction [qw = q,,(x)], while 
the wall temperature is uniform in the crosswise direction, but 
varies in the downstream direction [T,~(z)]. The H 2  boundary 
condition is such that the heat flux is uniform throughout the 

Figure 2 

uniform T w (H1) 
or u=O 

uniform qw (H2) / v  = 0 

aw/ax = o ' I I  / 

tgT/-dy = 0 
v=O 

Boundary conditions 

wall surfaces, while the wall temperature varies both in the 
crosswise and axial directions [Tw(x, z)]. It is worth mentioning 
that the results obtained here for the two boundary conditions 
were essentially indistinguishable, because the dependence on x 
of either qw or T w, depending on the thermal boundary condition 
imposed, is for all cases rather weak. 

The Nusselt number is defined as 

qwDh 
Nu = (21) 

k(T~ - r~) 

where T w is the mean temperature at the wall, given by 

2 f B / 2 ~  . 

I lw a x  (22) Tw=~ 
"0 

and 7/~ is the mean wall heat flux, defined as 

2 £ B / 2  . 
7:/~ = -~ )o qw ox (23) 

Clearly, T w reduces to T w for the H1 thermal boundary condi- 
tion; whereas, 7/w reduces to q~ for the H2  thermal boundary 
condition. 

N u m e r i c a l  s o l u t i o n  

Equations 5-9, together with the appropriate boundary condi- 
tions, are solved numerically via a finite-volume technique 
(Patankar 1980). The SIMPLE algorithm is adopted to handle 
the coupling of the momentum and continuity equations; whereas, 
the line-by-line Thomas algorithm is used to solve the discretized 
equations. 

Extensive mesh tests showed that uniform grids performed 
better than nonuniform ones. The meshes employed are: 22 x 22 
for ¢t = 1; 24 × 18 for ~ = 2; and 24 x 16 for ¢t = 4. 

For Newtonian fluids, it is easier to assess the accuracy of the 
solutions obtained with a given mesh. This is so, because exact 
values of the Nusselt numbers Nu and of the product between 
friction factor and Reynolds number f Re are available in the 
literature (e.g., Kaka~ et al. 1987). For these Newtonian cases, 
errors within = 1% are typically obtained for Nu and f Re with 
the meshes employed (Table 1). Refining the meshes further 
does not change the accuracy of the results obtained. 

For the non-Newtonian cases, no exact results are available. 
Therefore, for comparison purposes, results are obtained with 
finer meshes (32 X 32 for o~ = 1; 40 X 26 for a = 2; and 42 x 26 
for ot = 4) for some representative cases. In Table 2, these results 
are presented and compared with those obtained with the meshes 
employed. 

In Table 2, A~ __. ~max- ~min is a quantity related to the 
intensity of the secondary flow, which is defined later in the 

Table 1 Mesh tests: Newtonian fluids 

Mesh Nu* NUnu m f Re* f Renurn 

1 2 2 X 2 2  4.12 4.10 56.92 56.77 
2 24 X 18 5.20 5.24 62.23 62.00 
4 24 X 16 6.20 6.32 72.94 72.61 
1 36 X 36 4.12 4.10 56.92 56.86 
2 42 X 30 5.20 5.24 62.23 62.13 
4 42 x 26 6.20 6.31 72.94 72.83 

*Obtained from Kaka~j et al. (1987). 
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Table 2 Mesh tests: non-Newtonian fluids 

Mesh Re ~< /td~, kg/ms NUnu m 

1 2 2 × 2 2  330 3.1 X 10 -5  1 . 4 8 ×  10 -3  8.98 
1 3 6 × 3 6  330 3.1 x l O  - s  1.50 x 10 -3  8.98 
2 2 4 x 1 8  260 7 . 0 x  10 - s  2.09 x 10 -3  12.79 
2 4 0 x 2 6  260 7 . 0 x  10 - 5  2 . 1 0 ×  10 - 3  12.78 
4 2 4 × 1 6  193 1 . 9 x 1 0  - 4  1 . 8 7 x  10 -3  10.88 
4 4 2 × 2 6  193 1 . 9 x  10 - 4  1.91 x l O  -3  10.86 

results section. It can be seen that, for (*max - ~ l / m i n )  values, the 
percentage deviations are of the order of 1-1.5%; whereas, for 
Nu values, the agreement is within 0.2%. 

Some difficulties in convergence are caused by the highly 
nonlinear nature of the governing equations. To overcome these 
problems and obtain a converged solution, a 0th order continua- 
tion procedure in W e is employed, starting from the solution for 
the Newtonian case. Convergence is verified by means of two 
different methods: (1) evaluation of normalized residuals of the 
x- and y-momentum equations; and (2) evaluation of an overall 
heat balance, which should tend to zero as the converged solu- 
tion is approached. 

R e s u l t s  a n d  d i s c u s s i o n  

For all cases investigated, the friction factor was found to be 
essentially unaffected by the secondary flows. This finding is in 
agreement with the observations of a number of researchers 
(e.g., Mena et al. 1978; Hartnett and Kostic 1985; Hartnett 1992). 

It is interesting to analyze the present problem by means of 
two different approaches: (1) by investigating the effects of 
geometry and elasticity for a given fluid; and (2) by investigating 
the effects of the different dimensionless parameters that appear 
in the above problem formulation. In the present research, both 
approaches are adopted. 

The conclusions obtained with the first approach (the single- 
fluid analysis) are directly applicable to engineering situations for 
the fluid under investigation, but it is generally not possible to 
draw conclusions for other fluids, not even for those of same 
qualitative mechanical behavior. Therefore, generality is lost. 
When this approach is adopted, the values of the parameters 
appearing in Equation 16 are held fixed. 

The second approach (the dimensionless analysis) gives the 
relative importance of each dimensionless parameter, which al- 
lows a better understanding of the physics involved. With this 
information, it is possible to make predictions for any fluid 
behaving according to the constitutive equation employed, as 
long as the values of the related dimensionless parameters are 
kept within the ranges investigated. However, varying one dimen- 
sionless parameter, while maintaining all others fixed, generally 
means that a different fluid corresponds to each value of the 
varying parameter. Therefore, for the flow of a given fluid, it may 
not be simple to extract engineering predictions from results 
presented in terms of dimensionless parameters. For the analysis 
performed according to the second approach, the dimensionless 
viscosity parameters appearing in equation 17 are held fixed. 

Single fluid analysis 

In this analysis, the viscosity function is given by equation (16). 
To allow comparisons with available experimental results, the 
values of the parameters appearing in this equation are taken so 
as to fit the experimental data of a polyacrylamide solution 
employed in the experiments reported by Hartnett and Kostic 
(1985). These values are: -% = 0.282 Pa.s, -q= = 3.85 × 10 -3 Pa.s, 
h = 4.74 s, n = 0.494 and a = 0.942. 

For a single-fluid analysis, the characteristic velocity is chosen 
to be the mean axial velocity: 

vc -= ~ (24) 

and the H I  thermal boundary condition is imposed at the top 
and bottom walls. 

Some typical flow patterns are shown in Figure 3-5 for ducts 
with aspect ratios a = 1, 2 and 4; whereas, the other parameters 
were kept at Re = 690, Pr = 150, ~ '  = 3.5 × ! 0-4, and ~ '  = 
2.33 × 10 -3. 

The shapes of streamlines are in agreement with those re- 
ported by Townsend et al. (1976) and by Gervang and Larsen 
(1991). It is noted that, as the aspect ratio is increased, the 
negative vortex becomes smaller in size; whereas, the positive 
vortex increases to occupy almost all the domain. When W~' is 
increased, the streamline shapes remain unchanged, but the 
vortex intensity increases. 

Hartnett and Kostic (1985) obtained experimental heat trans- 
fer results for developing flow of a viscoelastic liquid in a 2 × 1 
rectangular duct. They observed that Nu values for non- 
Newtonian fluids are larger than for Newtonian fluids. This trend 
is also observed in this work, and, for some of the cases investi- 
gated, the percentage heat transfer enhancements predicted with 
the present analysis are of the same order of magnitude as those 
reported by Hartnett and Kostic. However, a quantitative com- 
parison is not possible, because Hartnett and Kostic do not 
report normal stress coefficient data for the fluid investigated in 
their experiments. 

The following results illustrate how the Nusselt number Nu 
and the intensity of the secondary flow vary with (1) the Reynolds 
number, Re; (2) the aspect ratio a ;  and (3) the first and second 
normal stress coefficients W~' and W~', respectively. It is worth 
noting that, for a fluid with constant normal stress coefficients, 
varying W~ and W~ is possible by varying the hydraulic diameter. 
Alternatively, we can think of a fixed hydraulic diameter and a 
hypothetical fluid whose normal stress coefficients can be varied 
independently of its other material functions. Therefore, W~' and 
*~  are dimensionless parameters related to the fluid elasticity 
for a given duct. 

The secondary flow intensity is well quantified by the differ- 
ence between the extreme values of the stream function, ~=ax - 
~min' The quantity qJmax is the maximum value of the stream 
function, which occurs at the "positive" vortex; whereas, Omin is 
the minimum value, occurring at the "negative" vortex. 

5. 

Figure 3 Streaml ines for cx-= 1 
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Figure 4 

1 .1e .~  1 .9e -o~  

Streaml ines for ~----- 2 

In Figures 6-9, Nu and (¢,~,, - ¢=i,)  are given as functions 
of ~ ' ,  for four different Reynolds numbers. Results in Figures 6 
and 7 pertain to a = 1; whereas, in Figures 8, and 9, the results 
are for e¢ = 2. The first comment about these results is that the 
qualitative behavior is nearly the same for both aspect ratios. 

Comparisons between Newtonian (low ~ s )  and non- 
Newtonian values of the Nusselt number are provided in Figures 
6 and 8. It can be readily seen that non-Newtonian Nu values 
are much larger. Also, it can be verified that the existence of 
secondary flows is responsible for the observed heat transfer 
enhancement, by noting that the Nu curves (Figures 6 and 8) 
have the same qualitative behavior as the Aq~ _= (¢max-  d&~i~) 
curves (Figures 7 and 9). 

For ~ = ~ = 0, (i.e., zero normal stress differences and, 
hence, no secondary flows) and -q(~/) (i.e., a shear rate dependent 
viscosity), Nu is just a little larger (less than 5%) than for the 
corresponding Newtonian cases. On the other hand, the follow- 
ing can be seen. 
(1) For a = 1 and ~ varying in the range 3 x 10- 6 - -  1 . 5  X 1 0 -  3,  

the corresponding Nu increment is from 6 to 275%. 
(2) For a = 2 and q/~ varying in the range 7 x 10- 6 - 3.5 x 10- 3, 

the corresponding Nu increment is from 38 to 230%. 
(3) For a = 4 and ~ varying in the range 1 × 10- 5 _ 1 x 10- ~, 

the corresponding Nu increment is from 33 to 130%. 
Thus, it can be concluded that the effect of a shear-thinning 
viscosity on heat transfer enhancement is typically negligible 
when compared with the secondary flow effect. 

Interesting trends can be observed in Figures 6-9. The sec- 
ondary flow intensity (~=a~-  ¢~i . )  increases with ~ '  up to a 
certain value, and from that point on, it starts decreasing mono- 
tonically with ~ * .  Therefore, the curves for (qm~x- ¢~i~) pre- 
sent a maximum. It seems that similar trends would be observed 
in the Nu curves, which is reasonable to expect, but many of the 
maxima would occur outside the range shown in Figures 6 and 8. 
Moreover, Figures 7 and 9 show that, in most cases, larger 
maximum values of (~,~x - ~mi,) are reached for the lower Re 
c u r v e s .  

It is perhaps worth recalling at this point that Nu is a 
constant, independent of Re, when the fluid is Newtonian, re- 
gardless the intensity of the ax4al flow. Therefore, it is readily 
seen that the non-Newtonian effect on heat transfer is very 
strong. 

There are two important and opposite forces that affect 
vortex intensity. One is the elastic force, due to the normal stress 
imbalance ~ ,  and the other is the shear force. The shear force 
always act against the motion and increases at higher and higher 
rates as the vortex intensity increases. The elastic force increases 
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with ~ '  up to a certain point, when the ~j~ effect takes over. 
Then, it reaches a maximum and decreases thenceforward. 
Townsend et al. (1976) observed that the effect of ~1 is opposite 
that of ~2, that is, vortex intensity tends to decrease as ~1 is 
increased. The effect of ~1 is milder than that of ~2 and is 
discussed further later in this section. 

In this manner, when both Re and ~ '  are small, the sec- 
ondaryflows are weak, and the viscous action does not play a 
significant role. Therefore, a monotonic increase of Nu and 
(t~=~x - Cmin) with these two parameters is observed, when they 
are both relatively small. As Re (or ~Z~', up to a certain value) is 
increased, however, the secondary flow gets stronger, and the 
viscous (shear) force becomes more and more important. There- 
fore, the slopes of the curves in Figures 6-9 decrease with '/~'. 
Furthermore, it starts decreasing earlier for higher Re because 
vortex intensity is higher for a given value of ~ .  

It is interesting to note that the maxima occur at somewhat 
higher ~ "  for the Nu curves, as compared to the corresponding 
(~max - Omin) curves. This is probably due to mild changes in the 
flow pattern, as the secondary flow intensity varies with ~Z~'. 

The maximum value of (¢max- d~mi,) decreases as Re is 
increased, because the transversal components of velocity be- 
come negligible when compared with the axial component. One 
exception is observed by the curve for Re = 130 in Figure 9. It 
seems that in this case, the elastic force starts decreasing due to 
the ~ '  effect before a high enough secondary flow intensity is 
achieved to invoke significant viscous action. 

As just mentioned above, increasing the first normal stress 
coefficient, ~ ' ,  tends to decrease the driving elastic force. Actu- 
ally, this fact was used above to explain certain trends. To 
understand better the influence of ~ ' ,  some extra cases were 
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investigated in which ~ '  and ~ '  were decoupled. The results 
obtained are shown in Table 3. It becomes clear from these 
results that increasing ~ '  inhibits the secondary flows (and, 
hence, heat transfer), especially for low Re and high ~ ' .  

Dimensionless analysis 

In this type of analysis, the dimensionless parameters appearing 
in the dimensionless viscosity function, (Equation 17), are held 
fixed at ~ = 26.36, al~ = 0.36, We = 1500, n = 0.494, and a = 
0.942. The characteristic velocity is chosen to be 

ap D~ 
v c - (25) 

az ~q~ 

and the H 2  heat boundary condition is imposed at the top and 
bottom walls. Moreover, for all cases, the Prandtl number is 
taken as Pr = 70. 

Figure 10 illustrates how Nu varies with ~ (or fluid elastic- 
ity), for Re = 2.5 × 10 4 and 2.5 × 105 and for three different 
aspect ratios. The corresponding values of (Omax- q%i,) are 
shown in Figure 11. 

It is noted from these figures that, for small values of +~' (or 
low elastic effects), Nu is larger for larger aspect ratios, as occurs 
for Newtonian flows. In the high +~' range, however, a different 
trend is observed. The Nusselt number increases as the aspect 
ratio is increased from a = 1 to c~ = 2 but then decreases when 
the aspect ratio is further increased to a = 4. These results imply 
that, for given values of +~ and +~  and a given Re, there is a 
critical aspect ratio that corresponds to maximum heat transfer. 

Table  3 Effect of ~1* for e = 2 

Re Pr +~' +~< Nu A+, kg/ms 

340 150 7.0 × 1 0 -  5 0.  1 4 . 8 3  3.26 × 1 0  - 3 
340 150 7 . 0 X 1 0  -5  4 . 6 3 X 1 0  - 4  14.70 3 . 1 5 X 1 0  -3  
260 160 7 . O x 1 0  -5  O. 12.84 2 . 1 2 X 1 0  -3  
260 160 7 . 0 × 1 0  -5  4 . 6 3 × 1 0  - 4  12.79 2 . 0 9 X 1 0  -3  
260 160 3 . 5 × 1 0  - ¢  10 - 2  20.81 4 . 7 7 × 1 0  -3  
260 160 3 . 5 × 1 0  -+  2 , 3 1 × 1 0  -2  16,67 2 . 7 0 × 1 0  -3  

The trend described above can be explained as follows. For 
low values of ff'~', secondary flows are weak for all aspect ratios, 
and the Nu behavior is essentially the same as for the Newtonian 
case. That is, Nu is a monotonically increasing function of ~, 
because, as the heated walls approach each other (with increas- 
ing a), the fluid bulk temperature is increased, which causes 
T w - T b to decrease. Because the heat flux is constant, Nu must 
increase for the Newtonian and low ~ *  cases. 

As ~ '  is increased, however, the secondary flow gets more 
intense, becoming responsible for a large (convective) portion of 
the total heat transfer. However, as the heated plates get close 
together, a viscous resistance to the secondary flow comes into 
play, causing the intensity of the vortices (and, hence, heat 
transfer) to decrease. 

It is also seen in Figures 10 and 11 that (d~m, x -Omin) de- 
creases in the range of higher values of ~ ' .  This indicates that 
the elastic force that drives the secondary flow decreases after 
some critical value of ~ ' ,  or else, a monotonically increasing or 
at most asymptotic behavior would be expected. The reason for 
this is related to the first normal stress coefficient, ~ ' .  Because 
• ~" and ~ are proportional to each other, ~ *  is also large in 
the high ~ range. As discussed earlier, the driving elastic force 
decreases as ~ '  is increased, which explains the observed trend. 
Because of slight flow pattern changes due to secondary flow 
intensity changes, the maxima occur at somewhat higher ~ '  for 
the Nu curves, as compared to the corresponding (*max- +min) 
C u r v e s .  

C o n c l u s i o n s  

The flow of non-Newtonian fluids inside rectangular ducts has 
been investigated. The governing differential equations of mass, 
momentum, and energy were solved numerically by a finite 
volume technique. The viscoelastic behavior of the flowing fluid 
was described via the Criminale-Ericksen-Filbey (CEF) consti- 
tutive equation. 
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Secondary flows are caused by elastic forces related to the 
second normal stress difference. Other  parameters  influence 
secondary flows, such as the aspect ratio, the Reynolds number,  
and the first normal  stress difference. However, the second 
normal stress difference plays the dominant  role. 

The dependence of secondary flow intensity and heat  transfer 
on these parameters  was investigated. It was found that  heat  
transfer is strongly enhanced by secondary flows, Nusselt num- 
bers reaching values as large as three times those for correspond- 
ing Newtonian ones. 

Two different analyses were performed, which allowed a more 
comprehensive study of the physical situation. The single-fluid 
analysis is the most common in the theology literature and 
provides information related to a given fluid. The dimensionless 
analysis can show the relative importance of the different flow 
phenomena.  

Perhaps the most interesting finding is related to maximum 
heat  transfer that  was shown to occur for some combinations of 
parameters.  This implies that  there are optimal aspect ratios and 
Reynolds numbers  in the sense of maximum heat  transfer, which 
depend on the fluid's mechanical behavior. This fact might be 
explored in future thermal  deigns of certain industrial processes. 
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